slovodefinícia
eigen
(wn)
Eigen
n 1: German chemist who did research on high-speed chemical
reactions (born in 1927) [syn: Eigen, Manfred Eigen]
podobné slovodefinícia
eigenvalue
(encz)
eigenvalue,vlastní číslo [mat.] vlastní číslo matice nebo lineárního
operátoru MM
eigenvalues
(encz)
eigenvalues,vlastní hodnoty Zdeněk Brož
eigenvector
(encz)
eigenvector,vlastní vektor Zdeněk Brož
eigenvalue
(wn)
eigenvalue
n 1: (mathematics) any number such that a given square matrix
minus that number times the identity matrix has a zero
determinant [syn: eigenvalue, eigenvalue of a matrix,
eigenvalue of a square matrix, {characteristic root of a
square matrix}]
eigenvalue of a matrix
(wn)
eigenvalue of a matrix
n 1: (mathematics) any number such that a given square matrix
minus that number times the identity matrix has a zero
determinant [syn: eigenvalue, eigenvalue of a matrix,
eigenvalue of a square matrix, {characteristic root of a
square matrix}]
eigenvalue of a square matrix
(wn)
eigenvalue of a square matrix
n 1: (mathematics) any number such that a given square matrix
minus that number times the identity matrix has a zero
determinant [syn: eigenvalue, eigenvalue of a matrix,
eigenvalue of a square matrix, {characteristic root of a
square matrix}]
manfred eigen
(wn)
Manfred Eigen
n 1: German chemist who did research on high-speed chemical
reactions (born in 1927) [syn: Eigen, Manfred Eigen]
eigenvalue
(foldoc)
eigenvalue

The factor by which a linear transformation
multiplies one of its eigenvectors.

(1995-04-10)
eigenvector
(foldoc)
eigenvector

A vector which, when acted on by a particular
linear transformation, produces a scalar multiple of the
original vector. The scalar in question is called the
eigenvalue corresponding to this eigenvector.

It should be noted that "vector" here means "element of a
vector space" which can include many mathematical entities.
Ordinary vectors are elements of a vector space, and
multiplication by a matrix is a linear transformation on
them; smooth functions "are vectors", and many partial
differential operators are linear transformations on the space
of such functions; quantum-mechanical states "are vectors",
and observables are linear transformations on the state
space.

An important theorem says, roughly, that certain linear
transformations have enough eigenvectors that they form a
basis of the whole vector states. This is why {Fourier
analysis} works, and why in quantum mechanics every state is a
superposition of eigenstates of observables.

An eigenvector is a (representative member of a) fixed point
of the map on the projective plane induced by a {linear
map}.

(1996-09-27)

Nenašli ste slovo čo ste hľadali ? Doplňte ho do slovníka.

na vytvorenie tejto webstránky bol pužitý dictd server s dátami z sk-spell.sk.cx a z iných voľne dostupných dictd databáz. Ak máte klienta na dictd protokol (napríklad kdict), použite zdroj slovnik.iz.sk a port 2628.

online slovník, sk-spell - slovníkové dáta, IZ Bratislava, Malé Karpaty - turistika, Michal Páleník, správy, údaje o okresoch V4