slovo | definícia |
zermelo set theory (foldoc) | Zermelo set theory
A set theory with the following set of
axioms:
Extensionality: two sets are equal if and only if they have
the same elements.
Union: If U is a set, so is the union of all its elements.
Pair-set: If a and b are sets, so is
a, b.
Foundation: Every set contains a set disjoint from itself.
Comprehension (or Restriction): If P is a formula with one
free variable and X a set then
x: x is in X and P(x).
is a set.
Infinity: There exists an infinite set.
Power-set: If X is a set, so is its power set.
Zermelo set theory avoids Russell's paradox by excluding
sets of elements with arbitrary properties - the Comprehension
axiom only allows a property to be used to select elements of
an existing set.
Zermelo Fränkel set theory adds the Replacement axiom.
[Other axioms?]
(1995-03-30)
|
| |
Nenašli ste slovo čo ste hľadali ? Doplňte ho do slovníka.
na vytvorenie tejto webstránky bol pužitý dictd server s dátami z sk-spell.sk.cx a z iných voľne dostupných dictd databáz. Ak máte klienta na dictd protokol (napríklad kdict), použite zdroj slovnik.iz.sk a port 2628.
online slovník, sk-spell - slovníkové dáta, IZ Bratislava, Malé Karpaty - turistika, Michal Páleník, správy, údaje o okresoch V4