slovo | definícia |
recursive (mass) | recursive
- rekurzívny |
recursive (encz) | recursive,rekurzivní adj: [it.] IvČa |
recursive (gcide) | algorithmic \algorithmic\ adj.
1. of or pertaining to an algorithm. recursive
[1913 Webster]
2. definitively solvable by a finite number of steps; -- said
of mathematical or logical problems. Contrasted with
heuristic.
[WordNet 1.5] |
recursive (wn) | recursive
adj 1: of or relating to a recursion |
recursive (foldoc) | recursion
mutually recursive
mutual recursion
recurse
recursive
When a function (or procedure)
calls itself. Such a function is called "recursive". If the
call is via one or more other functions then this group of
functions are called "mutually recursive".
If a function will always call itself, however it is called,
then it will never terminate. Usually however, it first
performs some test on its arguments to check for a "base case"
- a condition under which it can return a value without
calling itself.
The canonical example of a recursive function is
factorial:
factorial 0 = 1
factorial n = n * factorial (n-1)
Functional programming languages rely heavily on recursion,
using it where a procedural language would use iteration.
See also recursion, recursive definition, tail recursion.
[Jargon File]
(1996-05-11)
|
| podobné slovo | definícia |
nonrecursive (encz) | nonrecursive,nerekurzivní |
recursive definition (encz) | recursive definition, n: |
recursive routine (encz) | recursive routine, n: |
recursively (encz) | recursively,rekurzívně adv: Zdeněk Brož |
Precursive (gcide) | Precursive \Pre*cur"sive\, a.
Preceding; introductory; precursory. "A deep precursive
sound." --Coleridge.
[1913 Webster] |
recursive definition (wn) | recursive definition
n 1: (mathematics) a definition of a function from which values
of the function can be calculated in a finite number of
steps |
recursive routine (wn) | recursive routine
n 1: a routine that can call itself |
kent recursive calculator (foldoc) | Kent Recursive Calculator
KRC
(KRC) A lazy functional language
developed by David Turner in 1981, based on SASL,
with pattern matching and ZF expressions.
["Functional Programming and its Applications",
David A. Turner, Cambridge U Press 1982].
See also continental drift.
(2011-11-30)
|
mutually recursive (foldoc) | recursion
mutually recursive
mutual recursion
recurse
recursive
When a function (or procedure)
calls itself. Such a function is called "recursive". If the
call is via one or more other functions then this group of
functions are called "mutually recursive".
If a function will always call itself, however it is called,
then it will never terminate. Usually however, it first
performs some test on its arguments to check for a "base case"
- a condition under which it can return a value without
calling itself.
The canonical example of a recursive function is
factorial:
factorial 0 = 1
factorial n = n * factorial (n-1)
Functional programming languages rely heavily on recursion,
using it where a procedural language would use iteration.
See also recursion, recursive definition, tail recursion.
[Jargon File]
(1996-05-11)
|
recursive acronym (foldoc) | recursive acronym
A hackish (and especially MIT) tradition is to
choose acronyms and abbreviations that refer humorously to
themselves or to other acronyms or abbreviations. The classic
examples were two MIT editors called EINE ("EINE Is Not
Emacs") and ZWEI ("ZWEI Was EINE Initially"). More
recently, there is a Scheme compiler called LIAR (Liar
Imitates Apply Recursively), and GNU stands for "GNU's Not
Unix!" - and a company with the name CYGNUS, which expands
to "Cygnus, Your GNU Support".
See also mung.
[Jargon File]
(1995-04-28)
|
recursive definition (foldoc) | recursive definition
See recursive definition.
|
recursive descent parser (foldoc) | recursive descent parser
A "top-down" parser built from a set of
mutually-recursive procedures or a non-recursive equivalent
where each such procedure usually implements one of the
productions of the grammar. Thus the structure of the
resulting program closely mirrors that of the grammar it
recognises.
["Recursive Programming Techniques", W.H. Burge, 1975, ISBN
0-201-14450-6].
(1995-04-28)
|
recursive functional algorithmic language (foldoc) | Recursive Functional Algorithmic Language
REFAL
(REFAL) A language developed by V.F. Turchin (later
at CUNY?) in Moscow in about 1972.
See also supercompilation.
[V.F. Turchin, "An algorithm of generalisation in the
supercompiler", Workshop on partial evaluation and mixed
computations, Oct 1987, Denmark, Eds. D. Bjorner, A.P. Ershov,
N.D. Jones].
[V. Turchin, "Supercompiler System Based on the Language
Refal", V. Turchin, SIGPLAN Notices 14(2):46-54 (Feb 1979)].
(1998-06-29)
|
recursive macro actuated generator (foldoc) | Recursive Macro Actuated Generator
RMAG
(RMAG) Robert A. Magnuson, NIH ca 1970.
A stand-alone macroprocessor for IBM 360/370 under VS or
OS. Many built-in features and a library of several hundred
macros. Several large systems were written in RMAG to
generate source code for languages such as IBM JCL, IBM
assembly language, COBOL.
There was also a system (SLANG: Structured LANGuage compiler)
which would generate 370 assembly language from a
pseudo-structured-programming language, based on Michael
Kessler's structure programming macros developed at IBM.
["Project RMAG--RMAG22 User's Guide", R.A. Magnuson,
NIH-DCRT-DMB-SSS-UG103, NIH, DHEW, Bethesda, MD 20205 (1977)].
(1995-11-23)
|
recursive type (foldoc) | recursive type
A data type which contains itself. The commonest example is
the list type, in Haskell:
data List a = Nil | Cons a (List a)
which says a list of a's is either an empty list or a {cons
cell} containing an 'a' (the "head" of the list) and another
list (the "tail").
Recursion is not allowed in Miranda or Haskell {synonym
types}, so the following Haskell types are illegal:
type Bad = (Int, Bad)
type Evil = Bool -> Evil
whereas the seeminly equivalent algebraic data types are
acceptable:
data Good = Pair Int Good
data Fine = Fun (Bool->Fine)
|
recursive acronym (jargon) | recursive acronym
n.
A hackish (and especially MIT) tradition is to choose acronyms/
abbreviations that refer humorously to themselves or to other acronyms/
abbreviations. The original of the breed may have been TINT (“TINT Is Not
TECO”). The classic examples were two MIT editors called EINE (“EINE Is Not
EMACS”) and ZWEI (“ZWEI Was EINE Initially”). More recently, there is a
Scheme compiler called LIAR (Liar Imitates Apply Recursively), and GNU
(q.v., sense 1) stands for “GNU's Not Unix!” — and a company with the name
Cygnus, which expands to “Cygnus, Your GNU Support” (though Cygnus people
say this is a backronym). The GNU recursive acronym may have been
patterned on XINU, “XINU Is Not Unix” — a particularly nice example because
it is a mirror image, a backronym, and a recursive acronym. See also {mung
}, EMACS.
|
|